Introduction to HCI Fall 2021

Establishing requirements

Mahmood Jasim UMass Amherst

mjasim@cs.umass.edu https://people.cs.umass.edu/~mjasim/

© Mahyar with acknowledgements to Joanna McGrenere and Dongwook Yoon

Logistics

- ▶ Project
 - ▶ A working prototype
- ▶ Milestones
 - Investigate status quo, come up with several possible solutions, and systematically choose the best
 - Iteratively prototype your solution, gradually increasing its detail and polish
 - Evaluate your solution

Milestones (Report + Presentation)

- ▶ Milestone 1:
 - ▶ Problem statement, literature review, personas and tasks
- ▶ Milestone 2:
 - Features, Low-fidelity prototypes, high-fidelity prototypes
- ▶ Milestone 3:
 - ▶ Final prototype, evaluation design

Final Report (Report + Demo)

- ▶ Abstract
- ▶ Introduction
- ▶ Literature review
- System description
- ▶ Evaluation
- ▶ Results
- ▶ Conclusion
- ▶ Video demo

Example projects and project ideas

- Some sample projects from last years
 - https://tinyurl.com/nu2dcpze
- Some project ideas
 - ► https://tinyurl.com/5ak7rxps

Learning Goals

- ▶ Define and give examples of different types of requirements.
- Give examples of HCl techniques that are suitable / helpful for setting requirements.
- ▶ Be able to identify appropriate metrics for a given requirement (and outline what features good metrics have).
- ▶ Explain 3 steps for requirements generation.

What are requirements?

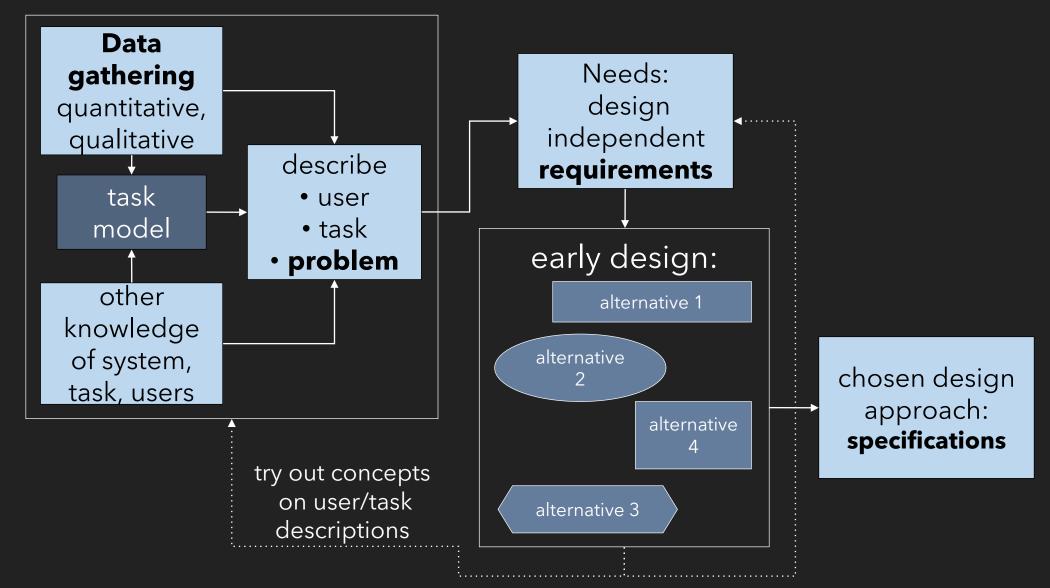
Two types of requirements...

- ▶ 1. Functional requirements: what the interface must do
 - usefulness -- scope, features...
- ▶ 2. Non-functional requirements: constraints that development must live in:
 - Delivery time, maximum cost, delivery platform, supportability, sustainability...
 - Usability / user experience: what it should be like to use (a primary focus of HCI design)
- ▶ ALL: clear, specific, defined in a MEASURABLE way

"Usability" focus is rarely independent

- Meeting usability requirements will/should often influence functional requirements. E.g.
 - Needed speed of response from system to user
 - Implementation platform
 - ▶ Desired user context e.g. On-the-go
 - Must work on mobile platform
 - ▶ Use in distracted environment e.g. Hospital tool
 - Voice output, speech input
 - Visual display requirements to support memory chunking

Functional vs. Usability requirements:


- ► The following list of requirements includes functional, usability and user experience requirements that could be defined for a movie theatre website. Which requirement is the best example of a functional requirement?
- ▶ Users must be able to buy electronic tickets in less than 3 distinct steps.
- Users must feel that the buying of electronic tickets is easy.
- → Users must be able to buy electronic tickets using the website.
 - ▶ Users must be able to learn how to buy electronic tickets on their first attempt.

Functional: usefulness not usability specifies a feature or capability

Can requirements change?

- Requirements should be stable if based on good data
- But not rigid They may shift over time, in particular as design reality dictates what is possible / feasible given other constraints.

Requirements establishing primarily during pre- and early design

Three steps to requirements

- Identify the human activity which the proposed interactive system will support: task, goals, conditions; current problems and strengths
- ▶ Identify all the users & other stakeholders who perform or will perform the activity: groups, capabilities, motives, needs
- ► Set focus and levels of support which the system will provide (the system's usability): constraints on the product's performance, to support specific user-stakeholders you have targeted.

Identify the human activity

- ▶ What outputs might you have at the end of this?
 - ▶ Goals
 - ▶ Task descriptions, task examples
 - ▶ Task models; normal steps and process; common breakdowns

Example: scheduling meetings

- ▶ Informal problem definition:
 - ▶ Hard to learn everyone's schedule & find a common free time
 - Participants respond slowly or incompletely to request
 - Complicated to respond in adequate detail
 - ▶ Individual schedules change → time no longer available
 - Shared calendars: privacy and system incompatibility
- ► Result: too much iteration; non-convergent
- ► Course of action:
 - ▶ Ideas?

Online scheduler is one obvious one which has taken hold; others?

Scheduling example

Some possible task goals:

- Identify who needs to be @ meeting
- Find common empty spaces in calendars
- ▶ Identify a subset of empty spaces to suggest
- ► Choose one » tell everyone
- Receive confirmation that everyone still avail
- ▶ If no, iterate
- Identify location
- ▶NEXT, break one of these down (many possible ways)
 - ▶ Find common empty spaces in calendars:
 - Ask all to communicate avail during a block; OR suggest times, get responses
 - ▶ Examine, manually or automatically

 - Find common openings, if any
 If no, iterate with different time blocks or suggestions

How might this go wrong?

- What if people respond very slowly?
- What if people respond incompletely?
- What if there are no solutions?

Dependencies among tasks: Task objects

- "Task objects" are resources required by tasks
 - Artifacts (files, lists, databases)
 - ▶ People (special expertise, authority, or knowledge)
 - ▶ Other processes, equipment or tasks
- ▶ Low-level tasks typically focus on a single resource
 - ▶ Task cannot be accomplished without the resource
 - Once resource is available the task can be completed
- ▶ (Higher-level / composite) tasks have multiple dependencies
 - ▶ The focus shifts as different sub-tasks are performed
 - Activity is suspended when resources are not available

Signs of task dependencies?

- ▶ Joint use of task objects by different tasks E.g. Access to shared files or databases
- Communication between people may be direct (phone call) or indirect (memo)
- Synchronization
 with real-world physical and mechanical processes
- Suspension blocking when resources (information, people, real-world processes) are not available

Scheduling example

- Objects for Scheduling task?
- ▶ Conflicts in their use suggest dependencies...
 - ▶ Calendars
 - Communication mechanisms (email, phone, cooler)
 - "Leader" meeting leader, secretary, program
- Other signs of task dependencies?
 - Can't find time until have heard from all participants
 - Participants can't give feedback on times until told their choices

The user

We have used Personas for this step.

- ▶ Need to understand general human needs:
 - Physical and cognitive abilities
 - ► Social and cultural environments
 - ▶ Use models of human behavior to test ideas
- ► Need to understand specific human needs:
 - ▶ Individuals have different skills and requirements
 - ▶ They have responsibilities and authority in organizations
 - ▶ They are expected to have a certain level of training
 - ▶ They have specific access to tools and resources

Do not assume the user is "like you", or "normal"

Scheduling example

- ▶ The USER
- Examples of general needs:
- Social / cultural environments (are people more comfortable with email, telephone or just running into each other?)
- Are some users more overwhelmed with information than others, more than they can humanly process?
- Examples of specific needs:
- Do all have laptops? are some reliant on mobile devices?
- ▶ Is there variation in how responsive they are?
- ► Do they have control over their time i.e. are they permitted to decide what meetings they should / should not go to?

Focus: which users will you support?

- Usually the intersection of
 - Greatest need and thus opportunity for business
 - Feasibility
 - ► For example: you might choose NOT to support student users who do not have mobile devices

How does this relate do the different types of Personas?

Metrics: how do we know if we have succeeded?

- Quantitative metrics: measured (countable) indicators of people's use of the interface:
 - Speed of performance, Incidence of errors, Ease of learning the system, User satisfaction
- Qualitative metrics: descriptive accounts that shed light on quantitative measures:
 - E.G. Stories about user impressions and frustrations, and their change pre- and post design

Choosing usability targets

- ▶ Choice of usability metrics affects the solution:
 - Prioritize most important facets based on design goals: E.g. Is speed most important, or is it very bad to make errors?
 - ▶ Ease of learning can be important, especially for novices
- ▶ Levels of performance need to be quantified:
 - Must know baseline performance first (pre-redesign)
 - ► Then establish realistic target levels
 - \blacktriangleright Make sure we can measure the changes \rightarrow iterate

Putting it all together: Stating requirements

- ▶ No single right way to write requirements; lots of companies have specific methods, tools, etc.
- One approach list out and then prioritize each of:
 - Supported activities (tasks and steps)
 - Tasks and processes involved that support the activity.
 - User(s)
 - ▶ Who does the task and what are their characteristics?
 - Level of support
 - What usability properties are important?

Where does technology come in?

- ▶ Tools support tasks
 - ▶ New tools should improve performance of a task
 - ▶ Tools are often specific to the tasks they support
 - ▶ Tools must be acceptable / desirable to users
- Systems support processes
 - Systems have to support links between tasks
 - Often tasks are automated using technology
 - ▶ Tasks have to be supported in a consistent manner
 - ▶ Desirable to reduce dependencies
 - Desirable to reduce task complexity

One way (of many) to use your task description...help you find solutions!

In-class activity

▶ Work in teams

- ▶ Discuss and identify users' tasks for your project
- ▶ Keep the following question in your mind:
 - ▶ What "task objects" (i.e. resources, parts of process, even things generated by the process) might be required to meet this task?
 - Are there dependencies on these objects that could lead to conflicts or breakdowns?

Additional Information

The form of the solution (finally, the design!!):

- ▶ But, design starts by adding constraints
 - Cost (time, money, expertise)
 - Compatibility with specific hardware or software
 - Market pressures (standards, "look and feel")
 - Many of these don't come from the designers!
- Multiple levels in the description (and prototypes)
 - ▶ The social/cultural/physical environment
 - ▶ The user interface
 - ▶ The application software
 - ▶ The operating system
 - System resources (storage, networking, peripherals)

Other factors in choosing a solution

- Existing intellectual property
 - Technology owned or licensed by the organization
 - Unique skills or knowledge in the organization
 - Market share or reputation
- ▶ Innovation
 - Technology becomes obsolete quickly
 - ▶ R&D requires time and effort
 - Often incremental improvements are good enough
 - Significant changes may be required sometimes

Optional reading

- ▶ Interaction Design: beyond human-computer interaction, 3rd Edition
 - ▶ Please read Chapter 10: Task Description, Task Analysis.
 - https://learning.oreilly.com/library/view/interaction-design-beyond/9780470665763/